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Introduction

Protein aggregation is a widely observed phenomenon in human 
diseases, biopharmaceutical production and biological research. 
Based on their morphology, protein aggregates are generally clas-
sified as either highly ordered, as in the case of amyloid fibrils, or 
amorphous, as in the case of bacterial inclusion bodies.

The term “amyloid” was first introduced by Rudolf Virchow 
to describe the starch-like pale waxy tissue abnormality,1 and 
amyloid fibrils are associated with dozens of human pathological 
conditions, including Alzheimer disease, Parkinson disease, dia-
betes type II and prion diseases.2-5 It has also been reported that 
a variety of bacteria can make functional amyloids.6-10 Under the 
electron microscope (EM), amyloid fibrils are elongated filaments 

with diameters of 6–12 nm.11-13 X-ray diffraction of aligned amy-
loid fibrils shows a characteristic pattern with a meridional reflec-
tion at 4.7 Å and an equatorial reflection at ~10 Å, indicating 
a cross-β structure.14,15 High-resolution structural studies have 
shown that these filaments are comprised of sequence-specific 
cross-β structure, with intermolecular and in-register β-sheets 
parallel to the filament axis.15-24 Amyloid fibrils can bind with 
amyloid-specific dyes, such as Congo red25,26 and thioflavin T,27 
and can be infectious and toxic as represented by the HET-s 
prion system.18,28

Distinguished from amyloid fibrils, bacterial inclusion bodies 
are classified as amorphous aggregates. They are protein aggre-
gates generated during recombinant protein production in bacte-
ria, and are a major concern in biotechnology.29,30 Formation of 
inclusion bodies may be caused by the high local concentration 
of nascent polypeptides emerging from ribosomes during overex-
pression, and insufficient chaperones presenting around to pro-
tect these nascent polypeptides from aggregation.29,31-33 Bacterial 
inclusion bodies are not just unstructured aggregates that are 
clusters of misfolded proteins sticking to each other through 
non-specific hydrophobic interactions.34,35 Rather, studies have 
shown that inclusion bodies have amyloid-like properties,30,32,36-43 
i.e., binding with Congo red and showing birefringence (Fig. 1), 
seeding the aggregation of their soluble counterpart39 and induc-
ing cytotoxicity in eukaryotic cells.44 These properties are indica-
tive that inclusion bodies might contain structure reminiscent 
of amyloid fibrils. Indeed, recent data that further support this 
hypothesis have been presented, and it is the aim of this review to 
summarize the current progress towards revealing the structure 
of bacterial inclusion bodies.

Morphology of Inclusion Bodies

When inclusion bodies are formed, they are normally observed 
under EM as large, dark aggregates inside the host cells45-47 (Fig. 
2A). After purified from cell lysate, inclusion bodies are amor-
phous (Fig. 2B), approximating sphere-like or rod-like shapes 
with diameters ranging from 0.2 μm to 1.2 μm.39,48-52 The size 
of inclusion bodies is probably related to the dimensions of the 
host cells in which they were produced, the protein sequences, 
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Protein aggregation is a widely observed phenomenon in 
human diseases, biopharmaceutical production, and biological 
research. Protein aggregates are generally classified as highly 
ordered, such as amyloid fibrils, or amorphous, such as bac-
terial inclusion bodies. Amyloid fibrils are elongated filaments 
with diameters of 6–12 nm, they are comprised of residue-
specific cross-β structure, and display characteristic proper-
ties, such as binding with amyloid-specific dyes. Amyloid fibrils 
are associated with dozens of human pathological conditions, 
including Alzheimer disease and prion diseases. Distinguished 
from amyloid fibrils, bacterial inclusion bodies display apparent 
amorphous morphology. Inclusion bodies are formed during 
high-level recombinant protein production, and formation of 
inclusion bodies is a major concern in biotechnology. Despite 
of the distinctive morphological difference, bacterial inclusion 
bodies have been found to have some amyloid-like proper-
ties, suggesting that they might contain structures similar to 
amyloid-like fibrils. Recent structural data further support this 
hypothesis, and this review summarizes the latest progress 
towards revealing the structural details of bacterial inclusion 
bodies.
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and the physical conditions during protein production. Inclusion 
bodies of some proteins also release amyloid-like protofibrils or 
fibrils under certain conditions, examples are: (1) BMP2(13-74) 
incubated at 37°C for 12 hours52 (Fig. 2C); (2) BMP2(13-74) 
produced in host cells for 12 hours52 (Fig. 2D); (3) BMP2(13-
74) partially disaggregated by 4 M urea solution (Fig. 2E); (4) 
ESAT-6 incubated at room temperature for 14 days52 (Fig. 2F); 
(5) Aβ42-GFP and Aβ42 after proteinase K proteolytic action53 
(Fig. 2G); (6) HET-s(218-289) after three hours of expression46  
(Fig. 2H). Since inclusion bodies of BMP2(13-74) and ESAT-6 
do not display fibrils right after three hours of expression, it is 
possible that these inclusion bodies mainly contain immature and 

flexible protofibrils that mature into fibrils given time 
and proper temperature. On the other hand, the inclu-
sion bodies of highly aggregation-prone, prion-forming 
domain, HET-s(218-289), may contain mature fibrils.

Inclusion Bodies are Often Enriched in 
β-Sheet Secondary Structure

The apparent amorphous inclusion bodies of different 
proteins were examined by Fourier transform infrared 
red (FTIR) spectroscopy, which is a method to analyze 
the secondary structure content of proteins in soluble 
as well as in aggregated form. For the FTIR spectrum 
of soluble VP1LAC, a β-galactosidase derivative with 
N-terminally fused VP1 capsid protein, peaks at ~1,634 
cm-1, ~1,644 cm-1 and ~1,654 cm-1 are usually assigned 
to the β-sheet, random coil and α-helix conformations 
of the protein, respectively39 (Fig. 3A). In the FTIR 
spectrum of inclusion bodies of VP1LAC, additional 
sharp peaks at ~1,621 cm-1 and ~1,691 cm-1 emerge 
compared to the spectrum of soluble protein (Fig. 3A), 
which are indicative of newly formed β-sheet structures 
in inclusion bodies.39,53-57 For some proteins, the FTIR 
spectra of their inclusion bodies also show peaks at 
~1,634 cm-1 and ~1,651 cm-1 (Fig. 3A), which suggests 

Figure 1. Congo red binding with amyloid fibrils and bacterial inclusion 
bodies. Congo red staining under bright field (left) and showing bire-
fringence under cross-polarized light (right) when binding with amyloid 
fibrils of HET-s (upper) and inclusion bodies of mouse prion protein 
PrP(23-231) (lower). (Partial reproduction of Figs. 2,26 and S8,52).

Figure 2. Morphology of bacterial inclusion bodies 
observed under electron microscope. (A) An E. coli cell 
containing inclusion body of ESAT-6, (B) Inclusion bodies 
of BMP2(13-74) after purification, (C) Inclusion body of 
BMP2(13-74) after incubation at 37°C for 12 hours, (D) Inclu-
sion body of BMP2(13-74) after grown in host cells for 12 
hours, (E) Inclusion body of BMP2(13-74) after disaggregated 
in 4 M of urea solution, (F) Inclusion body of ESAT-6 after 
incubation at room temperature for 14 days, (G) Inclusion 
body of Aβ42 after proteinase K proteolytic action, (H) 
Inclusion body of HET-s(218-289) after three hours expres-
sion. Scale bars indicate 1 μm. (Partial reproduction of Figs. 
5, S7,52 5,53 and S4,46).
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In the case of ESAT-6 inclusion bodies, residues 7-23 form 
hydrogen bonds as identified by NMR H/D-exchange experi-
ment (Fig. 4). Figure 4A (left) is the [15N,1H]-correlation NMR 
spectrum of dissolved monomeric ESAT-6 inclusion bod-
ies, which contains cross-peaks corresponding to its backbone 
amides. Upon exchange of the inclusion bodies in D

2
O buffer for 

311 hours, only cross-peaks of residues 8-25 and 36-43 are still 
present (Fig. 4A, right), which is indicative of slow exchange. The 
H/D-exchange was followed over time, and it was found that all 
residues in the inclusion bodies display a heterogeneous bipha-
sic behavior, with a very fast and a slow exchanging component 
(Fig. 4C). The detailed analysis of the H/D-exchange data shows 
that the major population (Fig. 4D and p > 1/2) of residues 7-23 
in ESAT-6 inclusion bodies display slow exchange rates of 10-3 
to 10-4 h-1 and are therefore considered to be involved in hydro-
gen bonds (Fig. 4B and D). In contrast, the majority of residues 
2-6 and 24-95 (Fig. 4D and p > 1/2) display fast exchange rates 
larger than 101 h-1 and are therefore considered to be unprotected 
in H/D-exchange and conformationally disordered. Because 
soluble ESAT-6 is a α-helical protein, but the circular dichro-
ism spectrum of ESAT-6 inclusion bodies is indicative of β-sheet 
conformation, and the x-ray diffraction shows a two-ring pattern 
that is typical for a cross-β structure,52 it is likely that the hydro-
gen bond-forming residues 7-23 of ESAT-6 contain a mainly 
amyloid-like, cross-β structure in its inclusion bodies.

To verify that residues 7-23 comprise the dominant compo-
nent in the formation of cross-β structure in ESAT-6 inclusion 
bodies, aggregation-prone residues in ESAT-6 were mutated to 
the aggregation-interfering residue Arg.69 It was found that only 
the mutations F8R, I11R, I18R or V22R within the residue 7-23 
segment abolished the formation of inclusion bodies, but not the 
mutations L36R, V54R or I76R. To confirm that residues 7-23 
can form an amyloid-like cross-β structure, a peptide E20 cor-
responding to residues 6-25 of ESAT-6 was synthesized, and it 
can form amyloid fibrils under physiological conditions. In sum-
mary, residues 7-23 of ESAT-6 in bacterial inclusion bodies form 

that these inclusion bodies also contain residual native-like 
β-sheet and α-helix structures of their soluble form.39,54-62

Inclusion Bodies Contain Cross-β Structure

Although no 3D structure of inclusion bodies is available, the 
tertiary structural content of inclusion bodies is, at least partially, 
determined by X-ray diffraction.52,63 The X-ray diffraction spectra 
of inclusion bodies shows a two-ring diffraction pattern (Fig. 3B), 
typical for the cross-β structure in amyloid fibrils, with a major 
reflection at 4.7 Å resolution interpreted as the spacing between 
strands in a β-sheet and a diffused reflection at ~10 Å interpreted as 
the spacing between β-sheets. The circular profiles of the two reflec-
tions, rather than the typical orthogonal positions for the cross-β 
structure in amyloid fibrils, show that the cross-β structural entities 
in inclusion bodies are not strongly aligned as in amyloid fibrils.

The Cross-β Structure of Inclusion Bodies is  
Residue-Specific and Amyloid-Like

(a) Structural studies of inclusion bodies of ESAT-6, BMP2 
(13-74) and MOG(ECD).52 To elucidate the residue-specific 
structural information, quenched hydrogen/deuterium exchange 
(H/D-exchange) experiments with solution nuclear magnetic 
resonance (NMR) were measured for three inclusion body-form-
ing proteins that have distinctive native soluble folds that cover 
the folding spectrum: (1) The α-helical early secreted antigen 
6-kDa protein (ESAT-6) (ESAT-6 folds only in complex with its 
protein partner CFP-10);64 (2) The mixed α-helical and β-sheet 
protein, residues 13-74 of the secretory human bone morphoge-
netic protein-2 [BMP2(13-74)];65,66 (3) The β-sheet extracellular 
domain of the human membrane protein myelin oligodendrocyte 
glycoprotein [MOG (ECD)] [MOG(ECD) contains one disul-
fide bridge].67,68 Inclusion bodies of all three proteins bind Congo 
red and thioflavin T, suggesting that they contain amyloid-like 
structures.

Figure 3. (A) The FTIR spectrum of inclusion bodies of VP1LAC (continuous line) and soluble VP1LAC (broken line). VP1LAC stays in the soluble cell 
fraction as well as in inclusion bodies when produced in E. coli. (B) The X-ray diffraction of inclusion bodies of ESAT-6. (Partial reproduction of Figs. 
8,39 and 2,52).
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per monomer and is characterized by the formation of a trian-
gular hydrophobic core.22 During protein production, HET-
s(218-289) forms inclusion bodies that display [Het-s] prion 
infectivity.46 The 13C-13C proton-driven spin-diffusion (PDSD) 
spectra with solid-state NMR was measured for the inclusion 
bodies of HET-s(218-289), and the spectra reproduces all the 
cross-peaks visible for the amyloid fibrils of HET-s(218-289) 
(Fig. 5). Since the NMR chemical shifts are strongly dependent 
on the conformation of a polypeptide, the same chemical shifts 
of inclusion bodies and amyloid fibrils of HET-s(218-289) sug-
gest that their molecular structures have to be virtually the same. 
This conclusion is also supported by NMR H/D-exchange data, 
which shows that the exchange pattern of the purified inclusion 

a cross-β structure characteristic of amyloid-like fibrils with the 
remainder of sequence disordered.

In the case of BMP2(13-74) and MOG(ECD), similar results 
were also found: residues 62-67 of BMP2(13-74) and residues 
85-95, 101-108, 111-118 of MOG(ECD) form a cross-β structure 
characteristic of amyloid-like fibrils with the remainder of the 
amino acid sequence disordered.

(b) Structural study of inclusion bodies of HET-s(218-
289).46 [Het-s] is a prion protein involved in the self-recognition 
of the filamentous fungus P. anserina.70 The C-terminal region 
containing residues 218-289 of [Het-s] [HET-s(218-289)] is the 
prion-forming domain.18,71 HET-s(218-289) can form amyloid 
fibrils, which contain a β-solenoid with two layers of β-strands 

Figure 4. Residues 7-23 of ESAT-6 form cross-β structure in inclusion bodies (A) [15N,1H]-HMQC-spectra of dissolved monomeric ESAT-6 inclusion 
bodies before (left) and after (right) exchanged in D2O buffer for 311 hours. (B) Ribbon representation of the 3D structure of soluble ESAT-6, while 
in complex with CFP-10 (not shown).64 The green-colored segment corresponds to residues 7-23. (C) NMR H/D-exchange curves for residues A9, 
T23, K57 and S77 of ESAT-6. The peak intensities for each residue were plotted versus the H/D exchange time. (D) H/D-exchange rates kex/h, and the 
relative population P of the two exchange components against the amino acid sequence of ESAT-6. The exchange rates of the major population (p > 
1/2) are colored green. If the minor population (p < 1/2) is present more than 1/3, the corresponding exchange rates are shown in grey. The secondary 
structures of the soluble conformation shown in (B) are highlighted in red. (Partial reproduction of Figs. 2 and S2,52).
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their architecture in depth. Structural comparison of inclusion 
bodies and amyloid fibrils of HET-s(218-289) suggests that they 
share the same structure, and it would be interesting to make this 
comparison on proteins that are less aggregation-prone. Since 
polymorphism plays an important role in the formation of amy-
loid fibrils,80,81 it might also induce different cross-β structure in 
inclusion bodies and amyloid fibrils of the same protein.

By assuming that the observed amyloid-like nature of inclusion 
bodies holds for most of the other documented bacterial inclusion 
bodies,82 amyloid-like aggregation is probably a common intrinsic 
property of protein segments and consequently is observed in both 
eukaryotes and prokaryotes.3 These structural studies of bacterial 
inclusion bodies thus extend the possible structural landscape of 
proteins: in addition to an unfolded or folded state, each protein 
may also contain one or more segments that are capable of forming 
a sequence-specific, cross-β-sheet aggregated state. “The process 
of protein aggregation can thus be viewed as a primitive folding 
mechanism, resulting in a defined aggregated conformation with 
each aggregated protein having its own distinctive properties.”52
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bodies closely resembles the exchange pattern of the 
HET-s(218-289) fibrils.

Heterogeneity of Inclusion Bodies

In addition to amyloid-like structure, native-like 
structure could be retained in inclusion bodies of 
some proteins,39,54-62,72 and inclusion bodies may con-
tain phospholipids from the E. coli membrane as well 
as other proteins and possibly RNA.46 Also the H/D-
exchange of solution NMR shows that a small popula-
tion (usually less than 1/3) of protein inside inclusion 
bodies have different exchange rates than the major 
 population that forms amyloid-like structure,52 indicat-
ing structural heterogeneity in inclusion bodies. So it 
is possible that, besides contaminants, inclusion bodies 
are comprised of mixtures of amyloid-like protofibrils/
fibrils with unfolded, partially folded or even natively 
folded proteins.73 The ratio of amyloid-like structure 
versus other heterogeneous structure could be affected 
by several factors, such as the stability of the protein in 
its native fold, or the physical parameters used during 
protein production.54

The structural study of inclusion bodies of FHA2 
provides a residue-specific analysis to show that inclu-
sion bodies retain at least part of their native-like 
structure.72 FHA2 is the N-terminal 185-residue 
functional domain of the 221-residue HA2 subunit 
of the influenza virus hemagglutinin protein.74 Its 
sequence contains several “sequential pairs.” By selec-
tively [13C,15N]-labeling these “sequential pairs” and measuring 
the rotational-echo double-resonance (REDOR) with solid-
state NMR75 for the inclusion bodies of FHA2, REDOR can 
detect the signal of 13C carbonyl (13CO) nuclei which are directly 
bonded to 15N nuclei in the protein sequence. By comparing the 
backbone 13CO chemical shifts of these residues to the chemi-
cal shift of α-helix and β-sheet, the local secondary structure of 
FHA2 inclusion bodies can be determined. It was found that the 
backbone 13CO chemical shifts of residues Gly-1, Gly-4, Ala-7 
and Leu-98 of FHA2 in inclusion bodies indicate an α-helix con-
formation. Considering that in the native soluble fold of FHA2, 
residues Gly-1, Gly-4 and Ala-7 lie in a N-terminal α-helix, and 
Leu-98 lies in an α-helix spanning residues 38-105, it suggests 
that some native-like structure is retained in inclusion bodies of 
FHA2.

Summary

Current structural studies have revealed that beneath the amor-
phous appearance, bacterial inclusion bodies are actually struc-
tured aggregates that contain residue-specific cross-β structure 
reminiscent of amyloid-like protofibrils or fibrils. Inclusion bod-
ies may also contain a portion of heterogeneously structured pro-
teins that may be native-like, partially folded or unstructured, and 
could retain native-like biological activities.76-79 High-resolution 
3D structures of inclusion bodies need to be solved to understand 

Figure 5. 13C-13C solid-state NMR correlation spectrum of purified HET-
s(218-289) inclusion bodies (blue) compared to a spectrum of in vitro fibrillized 
HET-s(218-289) (red). Additional cross-peaks, not belonging to HET-s(218-289), at 
~34 ppm, ~60–100 ppm and ~176–180 ppm are assigned to phospholipids, other 
proteins and RNA from E. coli. (Reproduction of Fig. 3,46).
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